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Optimal partial transport

Let Ω, Λ be two disjoint, convex domains associated with densities f and
g respectively. Let c : Rn × Rn be the cost function. Let m be a positive
number satisfying

m ≤ min{
∫

Ω
f ,

∫
Λ
g}.

The optimal partial transport problem asks what is the optimal plan that
minimizing the cost transporting mass m from (Ω, f ) to (Λ, g).

We will focus on the classical case when c(x , y) = 1
2 |x − y |2.

This problem has been studied by Caffarelli and McCann [Ann. of
Math. 2010], Figalli [ARMA, 2010], Indrei [JFA 2013].

For the standard optimal transport problem m =
∫

Ω f =
∫

Λ g ,
regularity issue has been studied by many experts during the last
decades, to list a few: Delanoe, Urbas, Caffarelli, Ma, Trudinger,
Wang, Loeper, Vilanni, Liu, Li, Santambrogio, Kim, Figalli, McCann,
Kitagawa, Guillen.....
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Optimal plan

A transport plan is described as a non-negative, finite Borel measure γ on
Rn × Rn satisfying

γ(A× Rn) ≤
∫
A
f (x)dx , γ(Rn × A) ≤

∫
A
g(x)dx

for any Borel set A. An optimal transport plan minimises the following
functional

γ 7→
∫
Rn×Rn

c(x , y)dγ(x , y). (1)
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Optimal map, free boundary

Caffarelli and McCann proved that γm, the minimiser of of (1), is
characterised by

γm := (Id × Tm)#fm = (T−1
m × Id)#gm,

where Tm is the optimal transport map between active regions U ⊂ Ω
and V ⊂ Ω, fm = f χU , and gm = gχV .

Indeed Tm = Du for some convex function u solving

(Du)#(fm + (g − gm)) = g . (2)

The free boundary in Ω (resp. Λ) is defined as ∂U ∩Ω (resp. ∂V ∩Λ).

Shibing Chen (USTC) (ANU) Free boundary May 5, 2019 5 / 21



Optimal map, free boundary

Caffarelli and McCann proved that γm, the minimiser of of (1), is
characterised by

γm := (Id × Tm)#fm = (T−1
m × Id)#gm,

where Tm is the optimal transport map between active regions U ⊂ Ω
and V ⊂ Ω, fm = f χU , and gm = gχV .

Indeed Tm = Du for some convex function u solving

(Du)#(fm + (g − gm)) = g . (2)

The free boundary in Ω (resp. Λ) is defined as ∂U ∩Ω (resp. ∂V ∩Λ).

Shibing Chen (USTC) (ANU) Free boundary May 5, 2019 5 / 21



Optimal map, free boundary

Caffarelli and McCann proved that γm, the minimiser of of (1), is
characterised by

γm := (Id × Tm)#fm = (T−1
m × Id)#gm,

where Tm is the optimal transport map between active regions U ⊂ Ω
and V ⊂ Ω, fm = f χU , and gm = gχV .

Indeed Tm = Du for some convex function u solving

(Du)#(fm + (g − gm)) = g . (2)

The free boundary in Ω (resp. Λ) is defined as ∂U ∩Ω (resp. ∂V ∩Λ).

Shibing Chen (USTC) (ANU) Free boundary May 5, 2019 5 / 21



A formulation of double obstacle problem

Caffarelli and McCann formulated the optimal partial transport problem as
a double obstacle problem for Monge-Ampère equation as following. Given
positive f , g supported in X ,Y respectively. Find a convex function u such
that

g(Du(x)) det(D2u(x)) = f (x) on U := {x : u(x) >
|x |2

2
} (3)

with boundary conditions

Du(U) ⊂ V := {x : u∗(x) >
|x |2

2
} and

∫
U
f =

∫
V
g ,

where u∗ is the Legendre transform of u.
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Boundary C 1,α regularity of optimal transport problem

Caffarelli and McCann’s C 1,α regularity of the free boundary is based on
the method used in proving the following theorem.

Theorem (Caffarelli 92)

Let Ω,Λ be two convex domains associated with densities 1
λ < f , g < λ

respectively. Suppose u is the convex function solving (∂u)]f χΩ = gχΛ.
Then, u ∈ C 1,α(Ω̄).

Remark. Instead of proving the C 1,α regularity of u directly, Caffarelli first
showed that u∗, the Legendre transform of u, has some quantitative strict
convexity, and then by duality the regularity of u follows.
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Known results

Caffarelli and McCann proved the existence and uniqueness of
solutions to the optimal partial transport problem, they showed that
that the free boundary ∂U ∩ Ω is C 1,α under the condition that Ω
and Λ are convex and disjoint.

When the domains Ω and Λ are allowed to have overlap, Figalli
proved that away from the common region Ω ∩ Λ, the free boundary
is locally C 1.

The last result was later improved by Indrei to a locally C 1,α

regularity result away from the common region and up to a relatively
closed singular set

Higher order regularity of free boundary is a very difficult open
problem.
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Main result for optimal partial transport problem

Our main result is a “Flatness implies smoothness” type theorem, and the
flatness is guaranteed by the assumption that dist(Ω,Λ) is sufficiently
large.

Theorem (C-Liu, 2018)

Given two bounded, C 2, uniformly convex domains Ω, Λ associated with
positive densities f and g . Given mass m to be transported. Suppose U is
the active region of Ω. Then, for any δ > 0,

a) if f , g are continuous, then there exists a constant L > 0 such that
∂U ∩ Ωδ is C

1,β for any β ∈ (0, 1), provided dist(Ω,Λ) ≥ L, where
Ωδ := {x ∈ Ω : dist(x , ∂Ω) > δ}.
b) if f , g are Cα, then there exists a constant L > 0 such that
∂U ∩ Ωδ is C

2,α′
for some 0 < α′ < α, provided dist(Ω,Λ) ≥ L.
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Observations

Caffarelli and McCann proved that the unit inner normal of ∂U ∩Ω, is
given by

ν(x) =
Du(x)− x

|Du(x)− x |
.

Hence, if one can prove that u is smooth up to the free boundary, it
follows that the free boundary is also smooth,

Fix any x0 ∈ Ω, y0 ∈ Λ, we have that x−y
|x−y | is uniformly close to some

unit vector e := x0−y0

|x0−y0| for any x ∈ Ω, y ∈ Λ, provided dist(Ω,Λ) is

sufficiently large. Hence |ν(x)− e| can be as small as we want
provided dist(Ω,Λ) is large enough.
By rotating and translating the coordinates, we may assume

{xn > δ} ∩ Ω ⊂ U ⊂ {xn > −δ} ∩ Ω,

and
{yn < −δ} ∩ Λ ⊂ V ⊂ {yn < δ} ∩ Λ,

where δ → 0 as dist(Ω,Λ)→∞.

Shibing Chen (USTC) (ANU) Free boundary May 5, 2019 10 / 21



Observations

Caffarelli and McCann proved that the unit inner normal of ∂U ∩Ω, is
given by

ν(x) =
Du(x)− x

|Du(x)− x |
.

Hence, if one can prove that u is smooth up to the free boundary, it
follows that the free boundary is also smooth,
Fix any x0 ∈ Ω, y0 ∈ Λ, we have that x−y

|x−y | is uniformly close to some

unit vector e := x0−y0

|x0−y0| for any x ∈ Ω, y ∈ Λ, provided dist(Ω,Λ) is

sufficiently large. Hence |ν(x)− e| can be as small as we want
provided dist(Ω,Λ) is large enough.

By rotating and translating the coordinates, we may assume

{xn > δ} ∩ Ω ⊂ U ⊂ {xn > −δ} ∩ Ω,

and
{yn < −δ} ∩ Λ ⊂ V ⊂ {yn < δ} ∩ Λ,

where δ → 0 as dist(Ω,Λ)→∞.

Shibing Chen (USTC) (ANU) Free boundary May 5, 2019 10 / 21



Observations

Caffarelli and McCann proved that the unit inner normal of ∂U ∩Ω, is
given by

ν(x) =
Du(x)− x

|Du(x)− x |
.

Hence, if one can prove that u is smooth up to the free boundary, it
follows that the free boundary is also smooth,
Fix any x0 ∈ Ω, y0 ∈ Λ, we have that x−y

|x−y | is uniformly close to some

unit vector e := x0−y0

|x0−y0| for any x ∈ Ω, y ∈ Λ, provided dist(Ω,Λ) is

sufficiently large. Hence |ν(x)− e| can be as small as we want
provided dist(Ω,Λ) is large enough.
By rotating and translating the coordinates, we may assume

{xn > δ} ∩ Ω ⊂ U ⊂ {xn > −δ} ∩ Ω,

and
{yn < −δ} ∩ Λ ⊂ V ⊂ {yn < δ} ∩ Λ,

where δ → 0 as dist(Ω,Λ)→∞.
Shibing Chen (USTC) (ANU) Free boundary May 5, 2019 10 / 21



Perturbation

Denote by ũ the potential function of optimal transport between U and V .

Let U∞ := {xn > 0} ∩ Ω,V∞ := {yn < 0} ∩ Λ. Let v be the convex
function solving (Dv)]f̃ χU∞ = gχV∞ , with v(x0) = ũ(x0) for some
x0 ∈ U∞.

Then, by a standard compactness argument we have that ũ can be as
close to v in L∞ norm as we want provided dist(Ω,Λ) is large enough.

If v is C 2,α, by some sort of perturbation argument (C 2,α means close
to a quadratic, while quadratic is quite stable) we can expect that ũ
should be C 2,α′

for some α′ < α.
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Regularity of the limit problem

First, lets recall an important result by Caffarelli. The smooth version of
the following theorem was also proved by Urbas independently.

Theorem (Caffarelli, 96)

Let u be the potential function of the optimal transport problem from
(X , f ) to (Y , g), where X ,Y are C 2, uniformly convex domains, f , g are
positive Cα densities. Then u ∈ C 2,α′

(X̄ ) for some 0 < α′ < α.

We can not apply Caffarelli’s result to out limit problem directly, since
our domains U∞,V∞ have singular part and flat part. But, by
examining his proof of the above theorem carefully, one can find that
the key estimates required in the proof can be established in our
situation. Therefore we have the following result.
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Regularity of the limit problem

Lemma

Suppose U∞,V∞ are given above. Suppose f , g are positive densities. Let
v be the convex function solves (Dv)]f χU∞ = gχV∞ . Then,
a) if f , g are continuous, then v ∈ C 1,β(U∞ ∩ Ωδ) for any β ∈ (0, 1).
b) if f , g are Cα, then v ∈ C 2,α′

(U∞ ∩ Ωδ) for some α′ ∈ (0, α).

Let v∗ be the standard Legendre transform of v , and Dv∗ is the
optimal transport map from V∞ to U∞. Then, we also have similar
result for v∗.

This result tells us that around 0 ∈ ∂U∞, ũ ≈ 1
2 |x |

2 up to an affine
transformation. By renormalisation and some delicate estimates, we
can show that the conditions of the following result are satisfied,
provided dist(Ω,Λ) is sufficiently large.
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Lemma (C, Figalli, 2015)

Let C1, C2 be bounded open set satisfying

B1/3 ∩ {xn ≥ P(x ′)} ⊂ C1 ⊂ B3 ∩ {xn ≥ P(x ′)}

B1/3 ∩ ∩{yn ≥ Q(y ′)} ⊂ C2 ⊂ B3 ∩ {yn ≥ Q(y ′)}.

Suppose f ∈ Cα(C1), g ∈ Cα(C2), and (Du)]f = g . There exist small
constants η1 ≤ η0 and δ1 ≤ δ0 such that, if

‖P‖C2 + ‖Q‖C1,α ≤ δ1, ‖f − 1‖L∞(C1) + ‖g − 1‖L∞(C2) ≤ δ1,

and ∥∥∥∥u − 1

2
|x |2
∥∥∥∥
L∞(C1)

≤ η1, (4)

then, there exists ρ2 > 0 small such that
u ∈ C 2,α

loc (C1 ∩ Bρ2) ∩ C 2,α′
(C1 ∩ Bρ2) for some α′ ∈ (0, α).
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Optimal transport with target consists of two disjoint parts

We consider optimal transportation from a source domain U
associated with density f to the target V = V1 ∪ V2 associated with
density g , where V1 and V2 are two domains separated by a
hyperplane H.

Denote by u (resp. v) the convex function solving (∂u)]f χU = gχV

(resp. (∂v)]gχV = f χU). In the following, we assume
1/λ < f , g < λ for some positive constant λ.

The more general model (target consists of many disjoint parts) is
also independently studied by McCann and Kitagawa. In particular,
they investigate the C 1,α regularity of the free boundary.
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Free boundary: Lipschitz, C 1,α regularity

First, under mild conditions, we have the Lipschitz regularity of the free
boundary.

Theorem (C-Liu, 2016)

The interior of U1 := ∂v(V1) and U2 := ∂v(U2) are disjoint and separated
by a Lipschitz hypersurface.

F := ∂U1 ∩ U is the free boundary in our model.

Theorem (C-Liu, 2016)

Suppose U,V1 and V2 are strictly convex, then the free boundary
F := ∂U1 ∩ U is C 1,α.
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Proof of the Lipschitz regularity

Assume that H = {xn = 0} ⊂ Rn, V1 ⊂ {xn < 0} and
V2 ⊂ {xn > 0}.

Let D := { y2−y1

|y2−y1|
∣∣y1 ∈ V1, y2 ∈ V2}. It is easy to check that

D ⊂ {z |z · en > α} for some α sufficiently small.

Define the cone C := {z | z|z| · (−en) ≥ β}, where 1 > β >
√

1− α2 is

a constant. We also denote Cx := {x + z |z ∈ C}. A straightforward
computation shows that z1 · z2 < 0 for z1 ∈ D, z2 ∈ C.
On one hand, given any x ∈ U1, for any x̃ ∈ Cx ∩ U, we have that

(x̃ − x) · (y2 − y1) < 0

for any y2 ∈ V2, where y1 ∈ ∂u(x).
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Proof continued

On the other hand, by monotonicity of convex function we have

(x̃ − x) · (z − y1) ≥ 0

for any z ∈ ∂u(x̃). Therefore ∂u(x̃) ∩ V2 = ∅.

Hence ∂u(Cx) ∩ V2 = ∅, which implies Cx ⊂ U1. Therefore, we have
the characterisation U1 = ∪x∈U1Cx .
Denote by fx the Lipschitz function over {xn = 0} with graph ∂Cx .
Let f := supx∈U1

fx . Since fx has uniform Lipschitz bound, we have
that f is also a Lipschitz function.

Then we can also write

U1 := {xn ≤ f (x1, · · · , xn−1)} ∩ U.
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Characterization of the unit normal of the free boundary

Denote by ui the restriction of u to Ui , i = 1, 2. Note that u1 = u2 on
F . Then, we extend the potential ui to Rn in the following way

ũi := sup{L : L is a linear function such that ui ≥ L, and DL ∈ Vi},

for i = 1, 2.

We can show that ũi , i = 1, 2 are C 1, and by implicit function
theorem we have that F = {ũ1 = ũ2} ∩ U is C 1. Moreover, the unit
normal of F at x is given by

ν(x) =
Du1(x)− Du2(x)

|Du1(x)− Du2(x)|
.
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Higher regularity

Observe that when dist(V1,V2) is sufficiently large, Du1(x)−Du2(x)
|Du1(x)D−Du2(x)| is

uniformly close to some unit vector e for any x ∈ F . Hence the free
boundary is close to a hyperplane (as close as we want, provided
dist(V1,V2) is large enough). Then, we can follow our argument for the
optimal partial transport problem to establish the following theorem.

Theorem (C-Liu, 2016)

Let U,V1,V2,F be as above. Then, given any δ > 0,
a) if f , g are continuous, then there exists a constant L > 0 such that
F ∩ Uδ is C

1,β for any β ∈ (0, 1), provided dist(V1,V2) ≥ L, where
Uδ := {x ∈ U : dist(x , ∂U) > δ}.
b) if f , g are Cα, then there exists a constant L > 0 such that F ∩ Uδ is
C 2,α′

for some 0 < α′ < α provided dist(V1,V2) ≥ L.
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Thanks for your attention
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