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Introduction A Minkowski type problem

Given p, q ∈ R and finite Borel measure µ on Sn, we are interested in solving

det(∇2u + uI ) =

√
u2 + |∇u|2

n+1−q

u1−p
µ on Sn (MAE).

Positive convex weak solution to (MAE):

u ∈ C(Sn), u > 0, is the support function of a convex body Ω in Rn+1, such that Ω

satisfies dC̃p,q(Ω, ·) = dµ.

Non-negative convex weak solution to (MAE) when p, q ≥ 0:

u ∈ C(Sn), u ≥ 0, is the support function of a convex body Ω in Rn+1, such that

when q 6= n + 1: Ω satisfies dC̃q(Ω, ·) = updµ;

when q = n + 1 and p ≥ 1: Ω satisfies dS(Ω, ·) = up−1dµ;

when q = n + 1 and p < 1: Ω satisfies u1−pdS(Ω, ·) = dµ.

2 / 19



Introduction A Minkowski type problem

Given p, q ∈ R and finite Borel measure µ on Sn, we are interested in solving

det(∇2u + uI ) =

√
u2 + |∇u|2

n+1−q

u1−p
µ on Sn (MAE).

Positive convex weak solution to (MAE):

u ∈ C(Sn), u > 0, is the support function of a convex body Ω in Rn+1, such that Ω

satisfies dC̃p,q(Ω, ·) = dµ.

Non-negative convex weak solution to (MAE) when p, q ≥ 0:

u ∈ C(Sn), u ≥ 0, is the support function of a convex body Ω in Rn+1, such that

when q 6= n + 1: Ω satisfies dC̃q(Ω, ·) = updµ;

when q = n + 1 and p ≥ 1: Ω satisfies dS(Ω, ·) = up−1dµ;

when q = n + 1 and p < 1: Ω satisfies u1−pdS(Ω, ·) = dµ.

2 / 19



Introduction A Minkowski type problem

Given p, q ∈ R and finite Borel measure µ on Sn, we are interested in solving

det(∇2u + uI ) =

√
u2 + |∇u|2

n+1−q

u1−p
µ on Sn (MAE).

Positive convex weak solution to (MAE):

u ∈ C(Sn), u > 0, is the support function of a convex body Ω in Rn+1, such that Ω

satisfies dC̃p,q(Ω, ·) = dµ.

Non-negative convex weak solution to (MAE) when p, q ≥ 0:

u ∈ C(Sn), u ≥ 0, is the support function of a convex body Ω in Rn+1, such that

when q 6= n + 1: Ω satisfies dC̃q(Ω, ·) = updµ;

when q = n + 1 and p ≥ 1: Ω satisfies dS(Ω, ·) = up−1dµ;

when q = n + 1 and p < 1: Ω satisfies u1−pdS(Ω, ·) = dµ.

2 / 19



Introduction A Minkowski type problem

Given p, q ∈ R and finite Borel measure µ on Sn, we are interested in solving

det(∇2u + uI ) =

√
u2 + |∇u|2

n+1−q

u1−p
µ on Sn (MAE).

Positive convex weak solution to (MAE):

u ∈ C(Sn), u > 0, is the support function of a convex body Ω in Rn+1, such that Ω

satisfies dC̃p,q(Ω, ·) = dµ.

Non-negative convex weak solution to (MAE) when p, q ≥ 0:

u ∈ C(Sn), u ≥ 0, is the support function of a convex body Ω in Rn+1, such that

when q 6= n + 1: Ω satisfies dC̃q(Ω, ·) = updµ;

when q = n + 1 and p ≥ 1: Ω satisfies dS(Ω, ·) = up−1dµ;

when q = n + 1 and p < 1: Ω satisfies u1−pdS(Ω, ·) = dµ.

2 / 19



Introduction A Minkowski type problem

Given p, q ∈ R and finite Borel measure µ on Sn, we are interested in solving

det(∇2u + uI ) =

√
u2 + |∇u|2

n+1−q

u1−p
µ on Sn (MAE).

Positive convex weak solution to (MAE):

u ∈ C(Sn), u > 0, is the support function of a convex body Ω in Rn+1, such that Ω

satisfies dC̃p,q(Ω, ·) = dµ.

Non-negative convex weak solution to (MAE) when p, q ≥ 0:

u ∈ C(Sn), u ≥ 0, is the support function of a convex body Ω in Rn+1, such that

when q 6= n + 1: Ω satisfies dC̃q(Ω, ·) = updµ;

when q = n + 1 and p ≥ 1: Ω satisfies dS(Ω, ·) = up−1dµ;

when q = n + 1 and p < 1: Ω satisfies u1−pdS(Ω, ·) = dµ.

2 / 19



Introduction A Minkowski type problem

S(Ω, ·) is the surface area measure: S(Ω, ω) = Hn({z ∈ ∂Ω : νΩ(z) ∈ ω}).

C̃q(Ω, ·) is the q-th dual curvature measure: C̃q(Ω, ω) =
´

A ∗
Ω

(ω)
rq(ξ)dσSn (ξ),

introduced by Huang-Lutwak-Yang-Zhang [Acta Math. 2016].

C̃p,q(Ω, ·) is the Lp dual curvature measure: C̃p,q(Ω, ω) =
´

A ∗
Ω

(ω)

rq(ξ)
up(AΩ(ξ))

dσSn (ξ),

introduced by Lutwak-Yang-Zhang [Adv. Math. 2018].

Support function: u = uΩ : Sn → R, defined by

u(x) = max{x · z : z ∈ Ω}.

Radial function: r = rΩ : Sn → R, defined by

r(ξ) = max{t : tξ ∈ Ω}.

Radial mapping: ~r = ~r Ω : Sn → ∂Ω, defined by ~r(ξ) = rΩ(ξ)ξ.

Radial Gauss mapping: A = AΩ, set-valued mapping,

A (ω) = {νΩ(~r Ω(ξ)) : ξ ∈ ω}, for ω ⊂ Sn.

Reverse radial Gauss mapping: A ∗ = A ∗Ω , set-valued mapping,

A ∗(ω) = {ξ ∈ Sn : νΩ(~r Ω(ξ)) ∈ ω}, for ω ⊂ Sn.
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Introduction A Minkowski type problem

The study of the Monge-Ampère equation on the sphere

det(∇2u + uI ) =

√
u2 + |∇u|2

n+1−q

u1−p
µ on Sn (MAE)

is equivalent to the study of the following problems:

q = n + 1 & p = 1: the classical Minkowski problem (1900).
• Nirenberg, Cheng-Yau, Pogorelov, Caffarelli.

q = 0 & p = 0: the classical Aleksandrov problem (1940s).
• Pogorelov, Oliker.

q = n + 1 & p ∈ R: the Lp Minkowski problem (by Lutwak [JDG 1993]).
• Chou-Wang [Adv Math 2006].
• (MAE) describes the self-similar solution to α-Gauss curvature flow ∂tX = −fKαν.
Andrews [Pacific J Math 2000] [JDG 1996]; Andrews-Guan-Ni [Adv Math 2016].

q ∈ R & p = 0: the dual Minkowski problem (by Huang et al. [Acta Math 2016]).

p, q ∈ R: the Lp dual Minkowski problem (by Lutwak et al. [Adv Math 2018]).
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Lp dual Minkowski problem p > 0 and q ∈ R

Theorem 1 (H.Chen-Li, 2018)

Let p > 0 and q 6= n + 1. Let µ ∈ NCH (finite, not concentrated on any closed
hemisphere).

if p > q, then (MAE) admits a positive convex weak solution.

if p = q, then (MAE) admits a non-negative convex weak solution with µ replaced
by λµ for some constant λ > 0.

if p < q, then (MAE) admits a non-negative convex weak solution.

Moreover if dµ = fdσSn with f > 0,∈ C∞(Sn), and p ≥ q, then (MAE) has a positive,
smooth, uniformly convex classical solution u.

Remark

For q = n + 1, such result was known: Chou-Wang [Adv Math 2006]; Aleksandrov,
Nirenberg, Cheng-Yau for the classical Minkowski problem.

If f > 0,∈ C∞(Sn), then the multiplier λ (when p = q) is unique. Solution u is
unique (p > q), and is unique up to a dilation (p = q).
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Lp dual Minkowski problem p > 0 and q ∈ R

Proof of Theorem 1:

We only deal with the case dµ = fdσSn with f > 0,∈ C∞.
For general µ ∈ NCH, one uses an approximation argument dµj = fjdσSn ⇀ dµ.
For this, C 0-estimate under the assumption µ not concentrated on any closed hemisphere
is required.

• p > q: it was proved by Huang-Zhao [Adv Math 2018].

• p = q: let uε be the solution to (MAE) for p and q = p− ε =: qε; let Ωε be the convex

body whose support function is uε. Choosing λε, such that Ω̃ε := λ
− 1
ε

ε Ωε satisfies
 
Sn

rqε
Ω̃ε

= 1.

Let ũε be the support function of Ω̃ε.
We show that (Ω̃ε, λε) converges to (u∞, λ) as ε→ 0, and u∞ satisfies (MAE) with µ
replaced by λµ.
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Lp dual Minkowski problem p > 0 and q ∈ R

Proof of Theorem 1:

• We then focus on the case q > p> 0.

Firstly observe that (MAE) is (up to a rescale) the Euler equation of

Jp,q(Ω) =
1

p
log

 
Sn

up
ΩfdσSn −

1

q
log

 
Sn

rqΩdσSn .

One attempts to use variational argument:

inf
Ω

{ ˆ
Sn

up
ΩfdσSn :

 
Sn

rqΩdσSn = 1
}
.

Good news: Take a minimising sequence Ωj , then

C ≥
ˆ
Sn

up
Ωj

fdσSn ≥ δn,f (max
Sn

uΩj )
p (using p > 0).

Hence Ωj converges to a limit Ω, which minimises the extreme problem.
Difficulty: It is possible that o ∈ ∂Ω. If this occurs, then we are in trouble to show the
minimiser Ω is a solution to the problem.
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Lp dual Minkowski problem p > 0 and q ∈ R

Proof of Theorem 1:

To overcome the difficulty, we study a modified problem and use an approximation.

Given ε > 0, let δ = q − p > 0 and let F̂ε,Fε ∈ C∞(R+), Fε = F̂ ′ε, Fε(z) > 0 for z > 0,

F̂ε(z) =


1

p
zp, if z ≥ 2ε,

zp+δ+ε

p + δ + ε
, if 0 ≤ z < ε.

Consider the flow

∂tX =
Ä
φ(t)u − fuFε(u)rn+1−qK

ä
ν (flow)

with X (·, 0) a C∞, uniformly convex hypersurface, enclosing the origin, where

φ(t) :=
Ä ˆ

Sn
fuFε(u)dσSn

ä¿Ä ˆ
Sn

rq(·, 0)dσSn
ä

such that
´
Sn rq(·, t)dσSn = const. under the (flow).
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Lp dual Minkowski problem p > 0 and q ∈ R

Proof of Theorem 1:

Let Ωt be the convex body with support function u(·, t). Consider

Jε(Ωt) =

ˆ
Sn

F̂ε(u)fdσSn −
1

q

ˆ
Sn

rqdσSn .

It can be verified that d
dt
Jε ≤ 0 under the (flow), and equality holds iff

det(∇2u + uI ) = λf
√

u2 + |∇u|2
n+1−q

Fε(u). (soliton)

C 0-estimates:By the monotonicity of Jε,

C ≥
ˆ
Sn

F̂ε(u)fdσSn =⇒ max
Sn

u(·, t) ≤ C , ∀t.

By applying the maximum principle to the parabolic equation of u(x , t),

min
Sn

u(·, t) ≥ min
¶î φ(t)

maxSn f

ó 1
ε
, ε,min

Sn
u(·, 0)

©
.

By
´
Sn rqdσSn = const., we derive a lower bound of maxSn u(·, t), which gives a positive

lower bound of φ(t). Hence

min
Sn

u(·, t) ≥ Cε, ∀t.
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Lp dual Minkowski problem p > 0 and q ∈ R

Proof of Theorem 1:

C 2-estimates: 1/Cε ≤ κi (·, t) ≤ Cε, ∀t. (i) K(·, t) ≤ Cε, ∀t; (ii) 1
κi

(·, t) ≤ Cε, ∀t.

Higher order estimates: ut satisfies uniformly parabolic equation.

ut is space-time Hölder (Krylov-Safonov);

det(∇2u + uI )
1
n = G(u,∇u, ut) ∈ Cα =⇒ u is spatial C 2,α (Evans-Krylov);

Hölder estimate for ∇2u in t follows by Tian-Wang [IMRN 2013].

Convergence: the a-priori estimates imply that the flow exists for all time. Hence

Cε ≥ Jε(Ω0)− lim
t→∞

Jε(Ωt) =

ˆ ∞
0

Ä
− d

dt
Jε
ä

Hence there is a subsequence tj →∞ such that d
dt
Jε(Ωtj )→ 0, and so u(·, tj) converges

to a uε solves

det(∇2uε + uεI ) = f
√

u2
ε + |∇uε|2

n+1−q
Fε(uε)

Approximation: Denote by Ωε the convex body whose support function is uε.

ˆ
A ∗

Ωε
(ω)

rqε dσSn =

ˆ
ω

uεFε(uε)fdσSn .

Since uε ≤ C uniformly, uε → u (as ε→ 0) which solves (MAE) in weak sense.
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Lp dual Minkowski problem p ≤ 0

• The above theorem gives a comprehensive study of (MAE) when p > 0.

• For p = 0, the study of (MAE) is equivalent to the study of dual Minkowski problem
proposed by Huang-Lutwak-Yang-Zhang [Acta Math 2016].

Böröczky-Henk-Pollehn [JDG 2018] for symmetric case;

Li-Sheng-Wang [J Euro Math Soc, to appear] by parabolic argument;

S. Chen-Li [Adv Math 2018] for a comprehensive discussion of the planar case.

• For p < 0, we have the following result

Theorem 2 (H.Chen-Li, 2018)

Let p < 0.

For p > q, (MAE) admits a positive and convex weak solution u, if µ ∈ NCH.
Moreover if dµ = fdσSn with f > 0,∈ C∞(Sn), then the solution u ∈ C∞ and is
uniformly convex, and is unique.

For p = q, if dµ = fdσSn with f > 0,∈ C∞(Sn), then there is a unique λ > 0 such
that (MAE) has a unique positive, smooth and uniformly convex solution u, with f
replaced by λf .
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Lp dual Minkowski problem Origin-Symmetric Case

For origin-symmetric case, we can prove the existence below by variational argument.

Theorem 3 (H.Chen-S.Chen-Li, 2018)

Let dµ = fdσSn , f be an even function on Sn, and 1/C ≤ f ≤ C. Suppose q > 0 and
−q∗ < p < 0, where q∗ > 0 is defined as

q∗ =



q

q − n
if q > n + 1,

n + 1 if q = n + 1,
nq

q − 1
if 1 < q < n + 1,

+∞ if 0 < q ≤ 1.

Then (MAE) has an even, positive, weak solution u, and Ω = Ωu is origin-symmetric and
has a strictly convex and C 1,α boundary.
Moreover, if f is additionally smooth, then (MAE) has an even, positive, smooth and
uniformly convex solution u.

12 / 19



Lp dual Minkowski problem Origin-Symmetric Case

Proof of Theorem 3:

Solve the optimisation problem

min
Ω∈Ke

0

¶
Φ̂p,f (Ω) :

 
Sn

rqΩdσSn = 1
©
, (Min Prob)

where Φ̂p,f (Ω) = 1
p

´
Sn fup

ΩdσSn .

Given q > 0, and γ ∈ (0, q∗], γ 6= +∞, there is a Cn,q,γ > 0 such thatÄ  
Sn

rqΩdσSn
ä 1

q
Ä  

Sn
u−γΩ dσSn

ä 1
γ ≤ Cn,q,γ , ∀ Ω ∈ Ke

0.

Let Ωj be a minimising sequence. Let γ = −p. Then 0 < γ < q∗.

Φ̂p,f (Ωj) = − 1

γ

ï ˆ
{uΩj

very small}
+

ˆ
{uΩj

not small, not large}
+

ˆ
{uΩj

very large}

ò
u−γΩj

fdσSn

→ 0 as max uΩj → +∞.

Note that Φ̂p,f (Ωj) ≤ Φ̂p,f (B1) = − 1
γ

´
Sn f < 0. Hence Ωj is uniformly bounded and so

converges to a limit Ω0 solving (Min Prob).
Since Ω0 contains the origin in its interior, we show that ∂Ω0 is strictly convex and C 1,α.
We then verify that uΩ0 solves (MAE).
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Φ̂p,f (Ωj) = − 1

γ

ï ˆ
{uΩj

very small}
+

ˆ
{uΩj

not small, not large}
+

ˆ
{uΩj

very large}

ò
u−γΩj

fdσSn

→ 0 as max uΩj → +∞.

Note that Φ̂p,f (Ωj) ≤ Φ̂p,f (B1) = − 1
γ

´
Sn f < 0. Hence Ωj is uniformly bounded and so

converges to a limit Ω0 solving (Min Prob).
Since Ω0 contains the origin in its interior, we show that ∂Ω0 is strictly convex and C 1,α.
We then verify that uΩ0 solves (MAE).
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Lp dual Minkowski problem Non-uniquness Results

A key ingredient for studying (MAE) is its variational property: (MAE) is the Euler
equation (up to a rescale) of

Jp,q,f ,1(Ω) = Φp,f (uΩ) + Ψq,1(rΩ),

where

Φp,f (u) =


1

p
log

 
Sn

fupdσSn , if p 6= 0,

 
Sn

f log udσSn , if p = 0,

and

Ψq,g (r) =


− 1

q
log

 
Sn

grqdσSn , if q 6= 0,

−
 
Sn

g log rdσSn , if q = 0.
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Lp dual Minkowski problem Non-uniquness Results

By studying the second variation of Jp,q, we obtain a non-uniqueness result.

Theorem 4 (H.Chen-S.Chen-Li, 2018)

If p and q satisfy one of the following (A1)-(A3), then

det(∇2u + uI ) =

√
u2 + |∇u|2

n+1−q

u1−p
on Sn

has at least two solutions: u1 ≡ 1, u2 6≡ 1.

(A1) q − 2n − 2 > p ≥ 0,

(A2) p + 2n + 2 < q ≤ 0,

(A3) q > 0 and −q∗ < p < min{0, q − 2n − 2}, where

q∗ =



q

q − n
if q > n + 1,

n + 1 if q = n + 1,
nq

q − 1
if 1 < q < n + 1,

+∞ if 0 < q ≤ 1.
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Lp dual Minkowski problem Non-uniquness Results

Proof of Theorem 4:

For any even function η ∈ C∞(Sn), η 6= const.,

Ωηt := {z ∈ Rn+1 : x · z ≤ 1 + tη(x), x ∈ Sn} ∈ Ke
0.

When |t| is sufficiently small, Ωηt has support function u(x , t) = 1 + tη(x).
We have

d

dt

∣∣∣
t=0
Jp,q,1,1(Ωηt ) = 0

d2

dt2

∣∣∣
t=0
Jp,q,1,1(Ωηt ) =

 
Sn
|∇η|2dσSn − (q − p)

 
Sn

(
η − η̄

)2
dσSn

where η̄ :=
ffl
Sn ηdσSn is the mean value of η.

The Poincaré inequality on the sphere said

inf
¶ffl

Sn |∇η|
2dσSnffl

Sn η
2dσSn

: η ∈ C∞(Sn) is even,

 
Sn
ηdσSn = 0, η 6≡ 0

©
= 2n + 2;
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Lp dual Minkowski problem Non-uniquness Results

Proof of Theorem 4:

Therefore if q > p + 2n + 2 then there is an η0 such that

d2

dt2

∣∣∣
t=0
Jp,q,1,1(Ωη0

t ) < 0.

Consequently

Jp,q,1,1(Ωη0
t ) = Jp,q,1,1(B1) + t

d

dt

∣∣∣
t=0
Jp,q,1,1(Ωt) +

1

2
t2 d2

dt2

∣∣∣
t=0
Jp,q,1,1(Ωt) + o(t2)

< Jp,q,1,1(B1), for t ∈ (0, ε′0),

This shows that B1 is not a minimiser.

But under the condition (A1)-(A3), we can show that there is a Ω ∈ Ke
0 minimising

Jp,q,1,1, and uΩ is a solution to (MAE).

So uΩ 6≡ 1, completing the proof.
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Lp dual Minkowski problem Non-uniquness Results

Remark. Poincaré inequality on the sphere

inf
¶ffl

Sn |∇η|
2dσSnffl

Sn η
2dσSn

: η ∈ C∞(Sn) is even,

 
Sn
ηdσSn = 0, η 6≡ 0

©
= 2n + 2;

inf
¶ffl

Sn |∇η|
2dσSnffl

Sn η
2dσSn

: η ∈ C∞(Sn),

 
Sn
ηdσSn = 0, η 6≡ 0

©
= n.

Compute the second variation of the functionals‹Jp,n+1,1,1(Ω) =
1

p
log

 
Sn

updσSn −
1

n + 1
log

 
rn+1dσSn ,

for even case; and for non-even case,‹Jp(Ω, z) =
1

p
log

 
Sn

up
z dσSn −

1

n + 1
log

 
rn+1
z dσSn

The functional is decreasing under flow

∂tX = −Kαν, α >
1

n + 2
,

which deforms hypersurfaces into a round point (Andrews-Guan-Ni [Adv Math 2016];
Brendle-Daskalopoulos-Choi [Acta Math 2017]).
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