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Introduction A Minkowski type problem

Given p, g € R and finite Borel measure p on S", we are interested in solving

n+1—q
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Positive convex weak solution to (MAE):

u € C(S"), u> 0, is the support function of a convex body Q in R™?, such that Q
satisfies dCp,q(92,-) = dpu.

Non-negative convex weak solution to (MAE) when p, g > 0:

u € C(S"), u>0, is the support function of a convex body Q in R™1, such that
o when g # n+ 1: Q satisfies d(.N'q(Q7 ) = uPdy;
o when g = n+1 and p > 1: Q satisfies dS(Q,-) = uPdy;
@ when g =n+1and p < 1: Q satisfies 4! PdS(Q, ) = dp.




Introduction A Minkowski type problem

S(£, ) is the surface area measure: S(Q,w) = H"({z € Q2 : I/Q(Z) € w}).

Eq(Q, -) is the g-th dual curvature measure: Eq(Q, fg{* &)dosn(€),
introduced by Huang-Lutwak-Yang-Zhang [Acta Math. 2016]

Ep,q(Q, -) is the L, dual curvature measure: Epyq(Q, fg{* (@)
introduced by Lutwak-Yang-Zhang [Adv. Math. 2018].

aydosn(€).

Support function: u = ug : S" — R, defined by
u(x)=max{x-z: z € Q}.
Radial function: r = rq : S” — R, defined by
r(€) = max{t: t& € Q}.

Radial mapping: 7= 7q : S" — 99, defined by (&) = ro(£)¢.
Radial Gauss mapping: & = &, set-valued mapping,

o (w) = {va(Pa(§)) : £ €w}, forwCS".
Reverse radial Gauss mapping: &/ = &/, set-valued mapping,

g (w)={£€S" : va(Fal€)) € w}, forwCS".
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Introduction A Minkowski type problem

The study of the Monge-Ampere equation on the sphere

1—
u? + |Vu|2nJr !

ut=p

det(V2u + ul) = pu onS"

is equivalent to the study of the following problems:
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° : the L, Minkowski problem (by Lutwak [JDG 1993]).
e Chou-Wang [Adv Math 2006].
e (MAE) describes the self-similar solution to a-Gauss curvature flow 9. X = —fK*
Andrews [Pacific J Math 2000] [JDG 1996]; Andrews-Guan-Ni [Adv Math 2016].
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Lp dual Minkowski problem p>0andg € R

Theorem 1 (H.Chen-Li, 2018)

Let p >0 and q# n+1. Let u € NCH (finite, not concentrated on any closed
hemisphere).

e if p > q, then (MAE) admits a positive convex weak solution.

e if p=q, then (MAE) admits a non-negative convex weak solution with p replaced
by A\ for some constant A > 0.

e if p < q, then (MAE) admits a non-negative convex weak solution.

Moreover if djy = fdos» with f > 0,€ C*°(S"), and p > q, then (MAE) has a positive,
smooth, uniformly convex classical solution u.
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Lp dual Minkowski problem p>0andg € R

Theorem 1 (H.Chen-Li, 2018)

Let p >0 and q# n+1. Let u € NCH (finite, not concentrated on any closed
hemisphere).
e if p > q, then (MAE) admits a positive convex weak solution.

e if p=q, then (MAE) admits a non-negative convex weak solution with p replaced
by A\ for some constant A > 0.

e if p < q, then (MAE) admits a non-negative convex weak solution.

Moreover if djy = fdos» with f > 0,€ C*°(S"), and p > q, then (MAE) has a positive,
smooth, uniformly convex classical solution u.

Remark
@ For g = n+ 1, such result was known: Chou-Wang [Adv Math 2006]; Aleksandrov,
Nirenberg, Cheng-Yau for the classical Minkowski problem.

o If f > 0,€ C*°(S"), then the multiplier A (when p = g) is unique. Solution u is
unique (p > g), and is unique up to a dilation (p = q).
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Proof of Theorem 1:
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Proof of Theorem 1:

We only deal with the case du = fdos» with f > 0, C*™.

For general € NCH, one uses an approximation argument du; = fidos» — dp.

For this, C%estimate under the assumption p not concentrated on any closed hemisphere
is required.

° : it was proved by Huang-Zhao [Adv Math 2018].

° . let uc be the solution to (MAE) for p and g = p — & =: g.; let Q. be the convex

~ _1
body whose support function is ue.. Choosing Ac, such that Q. := A\. © Q. satisfies

rde =1.
n QS

Let u. be the support function of ﬁs.
We show that (2., Ac) converges to (Uoo, A) as € — 0, and uo satisfies (MAE) with u
replaced by Ap.
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Proof of Theorem 1:

e We then focus on the case g > p> 0.
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Lp dual Minkowski problem p>0andg € R

Proof of Theorem 1:

e We then focus on the case g > p> 0.
Firstly observe that (MAE) is (up to a rescale) the Euler equation of

1 1
Tp.q(Q) = = Iog][ upfdosn — = Iog][ radogn.
p sn q sn
One attempts to use variational argument:
inf / uP fdosn - ][ rddogn = 11},
Q { sn @ sn Q }
Good news: Take a minimising sequence €2;, then
c> / ugjfdasn > (5,,7f(msax ug;)? (using p > 0).
Hence Q; converges to a limit €, which minimises the extreme problem.

Difficulty: It is possible that o € Q. If this occurs, then we are in trouble to show the
minimiser € is a solution to the problem.
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Lp dual Minkowski problem p>0and g € R

Proof of Theorem 1:

To overcome the difficulty, we study a modified problem and use an approximation.
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Givene >0,let 5 =qg—p>0andlet F.,F. € C*°(Ry), F. = F., F-(z) > 0 for z > 0,
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=z, if z > 2e,
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FE (Z) = zp+6+s

m, IfO§Z<€




Lp dual Minkowski problem p>0andg € R

Proof of Theorem 1:

To overcome the difficulty, we study a modified problem and use an approximation.

Givene >0, let 6 =q—p>0and let F., F. € C°(Ry), F. = F., F-(z) > 0 for z > 0,

1z"7 if z> 2e,
p

FE (Z) = zp+6+£

pTore ifo<z<e.

Consider the flow
0:X = ((t)u — fuFe(u)r"™ K v (flow)
with X(-,0) a C*°, uniformly convex hypersurface, enclosing the origin, where

quE(U)dUSn)/( /n ri(, O)dagn)

such that [, r(-, t)doss = const. under the (flow).

o) = (

sn
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Lp dual Minkowski problem p>0and g € R

Proof of Theorem 1:

Let Q; be the convex body with support function u(-, t). Consider

T(Q) = / F(u)fdosr — * / Fidgen.
sn q Jsn
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Proof of Theorem 1:

Let Q; be the convex body with support function u(-, t). Consider

\75(Qt) :/ lEg(u)deSn - %/ I‘qdagn.

n

It can be verified that £ 7. < 0 under the (flow), and equality holds iff

det(V2u+ ul) = M/ + |Vu|2n+1_qF€(u). (soliton)
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Lp dual Minkowski problem p>0andg € R

Proof of Theorem 1:
Let Q; be the convex body with support function u(-, t). Consider

= 1
jg(Qt):/ Fs(u)fdagn —a/ I’qu'SN.
It can be verified that £ 7. < 0 under the (flow), and equality holds iff
n+1—
det(V2u + ul) = Mf+/u? + |Vul? i qFE(u). (soliton)
CC-estimates:By the monotonicity of 7z,

c> / I?g(u)fdasn = mSzgxu(-,t) <C, Vt.

By applying the maximum principle to the parabolic equation of u(x, t),

rginnu(-,t) > min{[ o(t) }%,a,n;j'nu(.,O)}.

maxgn f
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Lp dual Minkowski problem p>0andg € R

Proof of Theorem 1:
Let Q; be the convex body with support function u(-, t). Consider

J=(2¢) :/ I/-_\s(u)fdagn — %/ ridosn.

n

It can be verified that £ 7. < 0 under the (flow), and equality holds iff
det(V2u + ul) = Mf+/u? + |Vu|2n+1_qF5(u). (soliton)
CC-estimates:By the monotonicity of 7z,
c> /n I?g(u)fdasn = mg;gxu(-, t) < C, Vt.

By applying the maximum principle to the parabolic equation of u(x, t),

9(t)

maxgn f

rginnu(.,t) > min{[ }%,a,rgin u(.,O)}.

By [, r?dosn = const., we derive a lower bound of maxg» u(-, t), which gives a positive
lower bound of ¢(t). Hence

rg,i,nu(-,t) > (., Vt
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Lp dual Minkowski problem p>0and g € R

Proof of Theorem 1:

C*-estimates: 1/C. < wi(-, t) < C., Vt. (i) K(-, t) < C., Vt; (i) %I_(-,t) < (., Vt.
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Lp dual Minkowski problem p>0andg € R
Proof of Theorem 1:
C*-estimates: 1/C. < wi(-, t) < C., Vt. (i) K(-, t) < C., Vt; (i) %’(, t) < G, Vt.

Higher order estimates: u; satisfies uniformly parabolic equation.

@ u; is space-time Holder (Krylov-Safonov);
1

o det(V2u+ ul)n = G(u, Vu,u;) € C* = u is spatial C** (Evans-Krylov);
o Hélder estimate for V2u in t follows by Tian-Wang [IMRN 2013].
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Lp dual Minkowski problem p>0andg € R
Proof of Theorem 1:
C?-estimates: 1/C. < ki(-, t) < C., Vt. (i) K(,t) < C., Vt; (i) 2(,t) < C., Vt.

Higher order estimates: u; satisfies uniformly parabolic equation.

@ u; is space-time Holder (Krylov-Safonov);
o det(V2u+ ul)% = G(u,Vu,u;) € C* = u is spatial C** (Evans-Krylov);
o Hélder estimate for V2u in t follows by Tian-Wang [IMRN 2013].

Convergence: the a-priori estimates imply that the flow exists for all time. Hence

C: 2 7R0) = im (@) = [ (= £7)
—00 0

Hence there is a subsequence t; — oo such that %je(ﬂtj) — 0, and so u(-, tj) converges

to a u. solves

n+1—
det(Vzug +ul) = F\/u2+ |Vu|? * ng(us)
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Lp dual Minkowski problem p>0andg € R
Proof of Theorem 1:
C?-estimates: 1/C. < ki(-, t) < C., Vt. (i) K(,t) < C., Vt; (i) 2(,t) < C., Vt.

Higher order estimates: u; satisfies uniformly parabolic equation.

@ u; is space-time Holder (Krylov-Safonov);
o det(V2u+ ul)% = G(u,Vu,u;) € C* = u is spatial C** (Evans-Krylov);
o Hélder estimate for V2u in t follows by Tian-Wang [IMRN 2013].

Convergence: the a-priori estimates imply that the flow exists for all time. Hence
€2 2.0 - lim 7.@) = [ (- 57
- t—00 0 dt

Hence there is a subsequence t; — oo such that %je(ﬂtj) — 0, and so u(-, tj) converges
to a u. solves

n+1—
det(Vzue +ul) = F\/u2+ |Vu|? * ng(us)

Approximation: Denote by €. the convex body whose support function is u..

/ rgdUSn :/UEFE(UE)de'Sn.
oF (w) w

Qe

Since ue < C uniformly, u. — u (as € — 0) which solves (MAE) in weak sense. 10719
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e The above theorem gives a comprehensive study of (MAE) when
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Lp dual Minkowski problem p<O0
e The above theorem gives a comprehensive study of (MAE) when

e For , the study of (MAE) is equivalent to the study of dual Minkowski problem
proposed by Huang-Lutwak-Yang-Zhang [Acta Math 2016].

@ Bordczky-Henk-Pollehn [JDG 2018] for symmetric case;
o Li-Sheng-Wang [J Euro Math Soc, to appear] by parabolic argument;
o S. Chen-Li [Adv Math 2018] for a comprehensive discussion of the planar case.
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Lp dual Minkowski problem p<O0
e The above theorem gives a comprehensive study of (MAE) when

e For , the study of (MAE) is equivalent to the study of dual Minkowski problem
proposed by Huang-Lutwak-Yang-Zhang [Acta Math 2016].

@ Bordczky-Henk-Pollehn [JDG 2018] for symmetric case;
o Li-Sheng-Wang [J Euro Math Soc, to appear] by parabolic argument;
o S. Chen-Li [Adv Math 2018] for a comprehensive discussion of the planar case.

e For , we have the following result

Theorem 2 (H.Chen-Li, 2018)
Let

e For p > q, (MAE) admits a positive and convex weak solution u, if u € NCH.
Moreover if dp = fdosn with f > 0,€ C°°(S"), then the solution u € C* and is
uniformly convex, and is unique.

e Forp=gq, ifdu = fdosn with f > 0,€ C>(S"), then there is a unique A > 0 such

that (MAE) has a unique positive, smooth and uniformly convex solution u, with f
replaced by \f.
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Lp dual Minkowski problem  Origin-Symmetric Case

For origin-symmetric case, we can prove the existence below by variational argument.

Theorem 3 (H.Chen-S.Chen-Li, 2018)

Let du = fdogsn, f be an even function on S", and 1/C < f < C. Suppose g > 0 and
—q* < p <0, where g* > 0 is defined as

q

—— if g>n+1,
qg—n

. n+1 if g=n+1,

q =
" if1<g<n+1,
g—1

400 if 0<g<1.

Then (MAE) has an even, positive, weak solution u, and Q = Q, is origin-symmetric and
has a strictly convex and CH* boundary.

Moreover, if f is additionally smooth, then (MAE) has an even, positive, smooth and
uniformly convex solution u.
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Lp dual Minkowski problem  Origin-Symmetric Case

Proof of Theorem 3:

Solve the optimisation problem
. -~ . q _ .
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where ®, (Q) = L [, fufdos.
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Lp dual Minkowski problem  Origin-Symmetric Case

Proof of Theorem 3:

Solve the optimisation problem

mm {Cbp F(Q) : ][ rodogn = 1}, (Min Prob)
n

where &, ((Q) = 2 Jon fugdosn.
Given g > 0, and v € (0,q"], v # +oo, there is a Gy 4,4 > 0 such that

(][ fgdasn)%(][n ug”dosn)% < GCogry VQEKS.

Let ©; be a minimising sequence. Let v = —p. Then 0 < v < g*.

~ 1 _
¢p’f(Qj) = —— {/ —I—/ —|—/ }UQ,Wfdagn
0l {unj very small} {UQJ. not small, not large} {ugj very large} /

— 0 as max ug; — +00.
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Proof of Theorem 3:

Solve the optimisation problem

mm {d)p F() : ][ rodogn = 1}, (Min Prob)
Sn

where &, +(Q) = 2 Jon fugdosn.
Given g > 0, and v € (0,q"], v # +oo, there is a Gy 4,4 > 0 such that

(f deUS")%(][n ug”dosn)% < GCogry VQEKS.

Let ©; be a minimising sequence. Let v = —p. Then 0 < v < g*.

~ 1 _
¢p’f(Qj) = —— {/ —I—/ —|—/ }UQ,Wfdagn
0l {unj very small} {UQJ. not small, not large} {ugj very large} /

— 0 as max ug; — +00.

Note that $p’f(Qj) < &Sp’f‘(Bl) = —% fS” f <O0.
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Proof of Theorem 3:

Solve the optimisation problem
. -~ . q _ .
9'2523 {¢p,f(Q) : ]2 rddogn = 1}, (Min Prob)

where &, +(Q) = 2 Jon fugdosn.
Given g > 0, and v € (0,q"], v # +oo, there is a Gy 4,4 > 0 such that

(f fgdasn)%(][n ug”dosn)% < GCogry VQEKS.

Let ©; be a minimising sequence. Let v = —p. Then 0 < v < g*.

~ 1 _
¢p’f(Qj) = —— {/ —|—/ —|—/ }UQ,Wfdagn
0l {unj very small} {UQJ. not small, not large} {LIQJ. very large} /

— 0 as max ug; — +00.

Note that $p’f(Qj) < $p,f(Bl) —1 [, f < 0. Hence Q; is uniformly bounded and so

= vy
converges to a limit Qg solving (Min Prob).

T3



Lp dual Minkowski problem  Origin-Symmetric Case

Proof of Theorem 3:

Solve the optimisation problem
. -~ . q _ .
n"é??g {¢p,f(§2) : ]é rddogn = 1}, (Min Prob)

where &, +(Q) = 5 Jon fugdosn.
Given g > 0, and v € (0,q"], v # +oo, there is a Gy 4,4 > 0 such that

(f fgdasn)%(][n ug”dosn)% < GCogry VQEKS.

Let ©; be a minimising sequence. Let v = —p. Then 0 < v < g*.

~ 1 _
() = —= {/ +/ +/ }ugﬂfdagn
0l {unjvery small} {UQJ. not small, not large} . {LIQJ. very large} /

— 0 as max ug; — +00.

Note that $p’f(Qj) < $p’f(Bl) = —% Jon f < 0. Hence ©; is uniformly bounded and so
converges to a limit Qo solving (Min Prob).

Since Qo contains the origin in its interior, we show that 9y is strictly convex and CH.
We then verify that ug, solves (MAE).
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Lp dual Mi i problem Nol i Results

A key ingredient for studying (MAE) is its variational property: (MAE) is the Euler
equation (up to a rescale) of

Tp.a,,,1(Q2) = @p r(ua) + Vq,1(ra),

where
1 ) _
—log + fuPdosn, if p#0,
Opi(u) =4 P
][ flogudosn, if p=0,
and
1 .
g Iog][ gridogsn, if g #0,
Voe(r) = ’

—f glogrdosn, if g=0.
SN
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By studying the second variation of 7, 4, we obtain a non-uniqueness result.
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Lp dual Mi i problem Nol i Results
By studying the second variation of 7, 4, we obtain a non-uniqueness result.
Theorem 4 (H.Chen-S.Chen-Li, 2018)

If p and q satisfy one of the following (A1)-(A3), then

n+l—q
S ENVTE
det(Vu + ul) = v+ [vu onS"

ult=p

has at least two solutions: uy =1, up #Z 1.
(A1) g—2n—-2>p >0,
(A2) p+2n+2<q<0,
(A3) g >0 and —g* < p < min{0, g — 2n — 2}, where

Py if g>n+1,

n+1 if g=n+1,
nq
qg—1
4+oo if 0<g<1.

ifl<qg<n+1,
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Proof of Theorem 4:
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Proof of Theorem 4:
For any even function n € C*°(S"), n # const.,

Q) ={zeR"™ :x.-z<1+tn(x), x€S"} € K§.
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Proof of Theorem 4:

For any even function n € C*°(S"),  # const.,
Ql ={zeR"™ :x-z<1+tn(x), xeS"} € K.

When |t| is sufficiently small, Q7 has support function u(x,t) =1+ tn(x).
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Proof of Theorem 4:
For any even function n € C*°(S"), n # const.,

Ql ={zeR"™ :x-z<1+tn(x), xeS"} € K.

When |t| is sufficiently small, Q7 has support function u(x,t) =1+ tn(x).
We have

d
d_t tzojp,q,lyl(ﬂ?) =0

16 /19



Lp dual Mi i problem Nol i Results

Proof of Theorem 4:
For any even function n € C*°(S"), n # const.,

Ql ={zeR"™ :x-z<1+tn(x), xeS"} € K.

When |t| is sufficiently small, Q7 has support function u(x,t) =1+ tn(x).
We have

dt

ij,q,1,1(9?) =0

t=|

d2

-\ 2
W Jp,q,l,l(Q?) = ][ |V77|2dUS" - (q - p)][ (n - n) dUS"
t=0 sn sn

where 7] := ., ndosn is the mean value of 7.

16

19
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Proof of Theorem 4:
For any even function n € C*°(S"), n # const.,

Ql ={zeR"™ :x-z<1+tn(x), xeS"} € K.

When |t| is sufficiently small, Q7 has support function u(x,t) =1+ tn(x).
We have

d

dr jp,q,lyl(Q?) =0

t=0

d2

-\ 2
S| Tars@) = (VuPdon—(@=p){ (n-7) dow
0 sn sn

t=

where 77 := {,, ndogsn is the mean value of 7.
The Poincaré inequality on the sphere said

. [ Vn[*doss
inf {M : ne C™(S") is even, ][ ndos» =0, %0 } =2n+2;
sn 772dUS" sn
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Proof of Theorem 4:
Therefore if ¢ > p + 2n + 2 then there is an 1o such that
d2

a2 tzojp,q,lyl(nzm) <o0.
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Proof of Theorem 4:
Therefore if g > p + 2n + 2 then there is an 79 such that

d2
a2 tzojp,qyl,l(ﬂ?o) <0.
Consequently
no 1 2 d2 2
Tpa11(2F) = Tpgra(Br) +t o ‘ Tpa11(Se) + 56— ij,q,l,l(Qr) + o(t%)
=l

< Tpa11(Br), forte (0,66),

This shows that B; is not a minimiser.
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Lp dual Mi i problem Nol i Results

Proof of Theorem 4:
Therefore if g > p + 2n + 2 then there is an 79 such that

d2
a2 | jp 011(2{°) < 0.
Consequently
1,d?
Tnara@P) = Tnara(B)+ 5| Toara(@)+ 36| Tnara() +o(r)

< jp,q’1,1(B1), for t € (0,56),
This shows that B is not a minimiser.

But under the condition (A1)-(A3), we can show that there is a Q € K§ minimising
Jp,q,1,1, and ug is a solution to (MAE).

So ug # 1, completing the proof.

17 /19



Lp dual Mi i problem Nol i Results

Remark. Poincaré inequality on the sphere

n V d "
in f{fS [Vnl*dos i ne C™(S") is even, ndasnzo,n$0}:2n+2;
2dO'Sn sn

. | Vn|“dogn
f{fS I 77| s 'T]GCOO(SH), ][nd0'§":0777$0}:
gn
Compute the second variation of the functionals
~ 1
n Q)=-1 Pdosn —
Tp,n+1,1,1(R2) ) og]én uPdos o

2d0’§n
! 1 Iog][r"Jrldasn7

1
1 Iog][rz"+1dagn

~ 1
Q,z)= =1 Pdogn —
T»(9, 2) » og ]g,. uydos ot

for even case; and for non-even case,

The functional is decreasing under flow
1

3tX_—Ka1/oz> +2

which deforms hypersurfaces into a round point (Andrews-Guan-Ni [Adv Math 2016];

Brendle-Daskalopoulos-Choi [Acta Math 2017]).
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