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1 Tensor Networks

J A tensor network is simply a collection of tensors connected by contractions.

Tensor network methods are employed in modern quantum information sci-
ence, condensed matter physics, mathematics and computer science, repre-
sentation theory, category theory, etc.

Tensor networks come with an intuitive graphical language, which was dat-
ed back to the early 1970’s by Roger Penrose:

[1]. Roger Penrose. Applications of negative dimensional tensors.
Combinatorial Mathematics and Its Applications, 1971
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J Let V be a finite-dimensional Hilbert space, V* be the dual space of V. Then
each basis {e’}; of V, there is a dual basis {n; }, of V*, that is n;(e’) = .

For each finite-dimensional Hilbert space WW;, given a basis {e@k e of W;
and a dual basis {n,(j) Hi of V¥, then each order-(p, q) tensor

TeWieW,®--- W, V'@V, ® -V
can be represented by

T = Z » Zp]l Jap(1)™ R ® o) R 77(1) Q- ® 77(,q)

J1 Jq
Z-l Zpajl ]q

By the Einstein summation convention, we can denote

T="T,. ]1 qu(l)“@---®6(p)2p®77§11)®"'®77]('3)‘

Example. Diagram (a) represents a vector, diagram (b) is a matrix, and
diagram (c) the tensor 7" jy.

(a) o) | (c) L
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. The map W @ W* — K, w ® ¢ — ¢(w) decides a natural bilinear map.

118 £ B

One can apply this map to contraction of the corresponding upper and lower
indices.

For example, if we happen to have W; = V] we may contract the corre-
sponding indices on 7"

Cra(T) = Tyy..i IO ()@ g ... 0 @ @ P @ -+ @ ¥

— TkiQ...ipij“jqe(Q)Zz R R e(p)lp ® 77](2) R--- R n§q)’

since the defining property of a dual basis is nj(.ll) (i) = 5;1
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. The order-(p, q) tensor T' can be reinterpreted as multilinear map 7" from
vectors to vectors:

T Vi@ -V, - W®- - W,
T/(v(1)®...®U(Q)) =T, '

- J1

where the tensor 7' contract the corresponding indices.

The order-(p, q) tensor T" can be also reinterpreted as multilinear map 7"
from dual vectors to dual vectors:

T”;Wf@...@WS%‘/l*@...@Vq*’

T"(p) ® -+ @) = Tiviy?™ H00) (€M) X -+ 0 (@) x ) @ -

Thus, we may move any of the vector spaces to the other side of the arrow
by taking their dual:

WV 2 KWV 2V sW2VIW—-K = W= V"

e @ e®" 5 M (M x .. .775,3) (019,

(9)

Jg
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 Connecting two tensor legs with a wire means that the corresponding indices
are contracted, that is, summed over.

(b)

118 £ B

I, . s
_ Jk_ B 7
I

BH %

In diagram (a):

At = ¢

In diagram (b): , , .
szkAjkl =S Bll-

(1 The wires are allowed to cross tensor symbols and other wires:

%—_

Q - @
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 Two or more tensors in a diagram form a tensor network.

Recently, there are many important papers:

[2]. Jacob Biamonte. Charged String Tensor Networks. Proceedings
of the National Academy of Sciences of U. S. A, 2017

[3]. Glen Evenbly. Hyperinvariant Tensor Networks and Holography.
Physical Review Letter. 119, 141602, 2017

[4]. F. Motzoi, M. P. Kaicher, F. K. Wilhelm. Linear and Logarith-
mic Time Compositions of Quantum Many-Body Operators. Physical
Review Letter. 119, 160503, 2017
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1 An important milestone was David Deutsch’s pioneering use of the diagram-
matic notation in quantum computing, developing the so called quantum
circuit model.

The quantum circuits model is widely used to describe experimental imple-
mentations of quantum algorithms, to classify the entangling properties and
computational power of quantum gates.

[5]. D. Deutsch. Quantum computational networks. Proceedings of
the Royal Society of London A: Mathematical, Physical and Engi-
neering Sciences, 1989.
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1 An Example, Quantum circuits

7 18 7
Quantum circuit diagrams is as follows:

(1). Time goes from left to right.
(2). Horizontal lines represent qubits.

(3). Quantum gates and measurements are represented by various symbols.

FOoMHE 4T

We consider a quantum circuit that consists of two tensors, a controlled NOT
gate C-NOT, and a Hadamard gate H: E B

ERET

x M
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1 The CNOT and Hadamard gates are:

CNOT = Z|a,a@b><a,b\,
H — ab
\FZ S

where the addition in the CNOT gate is modulo 2, thatis 11 =060 =
0,10=0&1=1,1& a = —a where —a is the Boolean negation of a.

The diagram translates into the following equation:

CNOT";, H), = IZ 1)%5, 5 © m){k, m|.

jkm

18 £ ;T |
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J In quantum information science, one often introduces a computational basis
{|k) } i, for each space V, {(j |}; for its dual basis, and

T = Tuli)(jkl
ijk

isatensorinV @ V@ V*.

1. Cup and cap tensors

In the previous section, wires are used to denote the contraction of pairs of
tensor indices. However, it is often useful to interpret certain wire structures
as independent tensors of their own. We start with three of these special
wire tensors that allow one to rearrange the arms and legs of another tensor:

(a) (b)

¢ U e

The identity tensor (a) is used for index contraction, cup (b) and the cap (c)
raise and lower tensor indices by bending the corresponding tensor legs.

18 £ ;T |
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 Expanding them in the basis are:

O 1) (il =Y 1k (K],

k

§Yig) = |kk),

k

Sij(igl =) (kkl.

k

118 £ B
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(1 2. Snake tensors

One can raise and then lower an index or vice versa, which amounts to doing
nothing at all. This idea is captured diagrammatically by the so called snake:

S-—2

In abstract index notation it is expressed succinctly as

565, = 6% = 6107

118 £ B

R R B

FranHE 4T

B E

ERET

x M



http://math.ecnu.edu.cn/~latex

3. Swap tensor
Crossing two wires can be thought of as swapping the relative order of two

vector spaces. If both wires represent the same vector space, it represents
swapping the states of the two subsystems:

(a) (b) -
X XX -

It is an important quantum gate in quantum computing, with a well-known
implementation in terms of three controlled-NOT gates:

JAA
IL-2X

a
D
N\

N
L/

118 £ B
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1 4. Transpose of Matrices

Given A';, we may reverse the positions of its indices using a cup and a cap.
This is equivalent to transposing the corresponding linear map in the basis:

F16TNHE 45T

B E

C A ]: A 2REF

x M
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5. Map-state duality

118 £ B

g7t 4R

B E
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1 6. Trace of matrices

Diagram (a) below represents the trace A’;. Diagram (b) represents the trace
BY,,.

]

(a) (b) (c)

A B (0 EISTH 4R

| »
KRS
5 omn o]
enur |
x A

Partial trace means contracting only party of tensors, such as the tensor
cv "’pk shown in diagram (c).



http://math.ecnu.edu.cn/~latex

1 7. Singular value decomposition

Singular value decomposition of matrices is at the heart of many numerical
simulation algorithms. If we can factor (1,1) tensor into blocks with simple
properties:

(1) (1,1) diagonal tensor storing the singular values,
(i1) two (1,1) unitary tensors,
The we can factor all (p, ¢) tensors.

(1,1) tensor can be considered as linear maps 7' : A — B, where A and B
be two vector spaces, thus,

T*, = U3V,

where U and V' are unitary, and X is real, non-negative, diagonal and has
the singular values {0y}, of T  on its diagonal. It can be expanded as

2= oklk)p(kla.
k

18 £ ;T |
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1 Diagrammatically this is represented as

Now using the wire bending techniques, we have the famous Schmidt de-
composition theorem:

Given a vector |[¢)) € A ® B, we may use the snake equation to convert it
into a linear map ¢ : A — B and apply the above process on v, we have

V) aeB = Z oi|Vi) 4l i) B

The singular values {0}, }; now correspond to the Schmidt coefficients.

118 £ B

e

B E
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(1 Schmidt decomposition theorem has important applications in quantum in-
formation theory.

Diagrammatically Schmidt decomposition theorem is represented as
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1 8. Matrix product states

Given a n qubits quantum state [¢)), fully describing this state requires an
amount of information that grows exponentially with n, that is

[y =) 9 Hig - k),
ijk

has 2" coefficients 1"/ "*, this is too difficult !!

We need to find new representation of |¢)) such that the data is less intensive.
We wish to write ) as

1] 4[2 iy
) =Y Tr(AAS - ADig - ),
ij--k
where Agl], AE.Q], cee Agﬁn] are indexed sets of matrices. Calculating the com-
ponents of |¢)) becomes to calculate the the products of matrices, hence the
name matrix product state.

18 £ ;T |
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 If the matrices are bounded in size, then the amount of information required
to describe them is only linear in n. For instance, if the matrices are at most
x by ¥, the size of the representation scales as ny>.

We can represent quantum states into quantum networks by recursive appli-
cation of the singular value decomposition process, for example for 4 qubit
state |1) = Y., ¥ ]ijkm), we have:

R N Aa'ae
— FO-0-0-0-0-]

118 £ B
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 If the tensors are grouped, we have

W) =Y ANAP AP AW ijkm).

ijkm

118 £ B
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( There is a lot of excitement about tensor network algorithms, for example: —

Matrix Product States (MPS), Tree Tensor Networks (TTN), Projected En- s i
tangled Pair States (PEPS), etc.

Diagrammatically these methods are represented as

EosTnttasm

B E

_PEPS _
E
1 MPS Eli
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 If the tensors are grouped, we have

and

[y = > AN AP AP AW i jkm).

i7km

118 £ B

R R B
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(1 There is a lot of excitement about tensor network algorithms, for example: —

Matrix Product States (MPS), Tree Tensor Networks (TTN), Projected En- s i
tangled Pair States (PEPS), etc.

Diagrammatically these methods are represented as

Formmttasm

B E

_PEPS _
E
1 MPS Eli
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2 Quantum Networks

A ATHRETFEBMEILNE FMERRLEIL 20 FRERERN—
PMEEMRFGE. KRERE:

[1]. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi. Quantum
State Transfer and Entanglement Distribution among Distant Nodes in
a Quantum Network. Physical Review Letters 78, 3221, 1997.

[2]. R. Milo, S. Itzkovitz, N. Kashtan. Response to comment on net-
work motifs: Simple building blocks of complex networks and super-
families of evolved and designed networks. Sciences, 305, 2004

[3]. S. Perseguers, M. Lewenstein, A. Acin, J. I. Cirac. Quantum
complex networks. Nature Physics 6, 539 - 543, 2010
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J [4]. G. Chiribella, G. M. D. Ariano, P. Perinotti. Optimal Cloning of
Unitary Transformation. Physical Review Letters 101, 180504, 2008

[5]. G. Chiribella, G. M. D. Ariano, P. Perinotti. Quantum Circuit
Architecture. Physical Review Letters 101, 060401, 2008

[6]. A. Bisio, G. Chiribella, G. M. D. Ariano, S. Facchini, and P.
PerinottiG. Optimal Quantum Tomography of States, Measurements,
and Transformations. Physical Review Letters 102, 010404, 2009

SCEK [4], [5], [6] & T & BIChoi-Jamiolkowski [E)#4 3k & 31 = F M 4%
2ig, FHIVGEENDBIZIEL.
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3 Linear Maps sme
 In this talk, all complex Hilbert space H is finite dimension. We have

LHQ@H,®---x H.)=L(H,) @ L(Hyp) -+ x L(H,).

FOMHE 45T

This shows that if A € L(H, ® H,) ® - -- X H.), then there exists B B
E

A; € L(H,), B € L(Hy), -+, Cie L(H,)

£ i
such that
A:ZAz‘@BZ‘"'@CZ-.
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We adopt these convention:
Lo T

UHyp n=H.QH,®: - @ Hy. BR®
d Ay means A € L(Hap. n);

3 Ay, means A € L(H,, Hy);

A, By denotes (Aq @ 1.)(I;, @ Bye);

 T'r, denotes partial trace over H,;

7= denotes partial transposition over H,,.
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4 Choi-Jamiolkowski Isomorphism

 Theorem. The map
¢!LX£(H®,£(Hﬂ)—+ZXEAC§EQ)
is defined by

¢ : M My, Mo = ZM(EZJ) ® Lij

ij

is an isomorphism between L(L(Hy), L(H;)) and L(H; ® Hy),

where F;; is the matrix of i-th row and j-column is 1, otherwise is 0.

The operator M = &(M) is called the Choi operator of M.

118 £ B

FmuHtsm

B E

ERET

x M
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 The inverse map
¢ L(H, ® Hy) — L(L(Hy), L(Hy))
is decided by

(€1 (M1)](X) = Tro[(ly ® X ) M),

where Mg € /:,(Hl X Ho),X c ﬁ(H())

118 £ B

FaHE 4T

B E

ERET

X

B
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5 The Link Product

118 £ B

J Let
M € L(L(Hy), L(H:)), N € L(L(Hy),L(Hs)).

Consider the composition

F:=NoM e L(L(Hy), L(H)),

FoumEsn

we get B H

C(F) = Tri[(I ® My})(Nax ® L))

We denote
N+ M =Tr[(I, ® M) (Ny @ ).

Where M = MlO, N = N21.



http://math.ecnu.edu.cn/~latex

J Consider
M e L(L(Hy® Hy), L(H, ® H3)),

118 £ B

N e L(L(H;® Hj), L(H, ® Hg)),

FHTMHET

B E

ERET

% B
We have

Mo Me L(H ® Hy® Hy® Hy), e

AfééAIEZXEhQQE%QQE&QQE%)
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Define the composition

N*xM:=N&TL)o(MeIs),

and

Nx M Nx M= T’l“g[([456 & M%QQ)(IOIQ & N4635)].

118 £ B

FMHE 45T

B E
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] Definition. Let
M e LI H), NeL(X)H,)).

1€A J€J
where A and J are two finite set of indexes.

Then the link product NV * M is an operator in

LR H)® (R Hy)

iEA\JT jeJ\A

is defined by

N s M :=Tryns[(Ina © M™7)(Iy 5 ® N)].

118 £ B

R R B

BH %

Fa7mHE 4T

B E
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QIfANJ =0, then

if A = J, then

N+M=N®M,

N x M = Tr[M*N].

118 £ B

FasHE 45T

B E

ERET
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 Definition. A quantum network is a directed acyclic graph:
% 18 E 7

HH“HRE<:)

1
2 \ 10
F9MHE 45T
0 @/
— 6 B |
i
3 2RET
/\%\ K
© 8 St

B

/4”'
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 Equivalent following network:

FaMHE 45T

B E
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J If we let

% I8 E T
n m n m
@ 1 T
ke : = k Ci k Ci—C I
The quantum network is: EPE
A
0 1 4 6 9 10 12 13 SRER
9 5 5 5 11 %
Cl C2 C5 Cs ”
3 3 |G| 8 |Ca 8 8
7
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J If we let

G

Ay

Cit1

Co

A,

Cs

Ca

Ay

Cit1

Cs

10 12

13

Ce

118 £ B
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6 Conclusion

1 For above network, note that the input space is:
Hiyp = Hy® Hy ®@ Hy @ He ® Hya,

output space is
Hoyt = Hg ® Hip ® His.

d Theorem 1. Each quantum network is decide by a positive operator in
ﬁﬁHmQQE%m)

Converse, under a constrain condition, each positive operator in £(H;, ®
H,.) can be realized by a quantum network which is made of a series of
Isometries Quantum Channel.

 Link product told us that tensor networks are special quantum net-
works.

118 £ B

R R B
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Thank your attention !
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